Anomaly Detection and SQL Prepare Data Sets for Data Mining
نویسندگان
چکیده
Anomaly detection has been an important research topic in data mining and machine learning. Many real-world applications such as intrusion or credit card fraud detection require an effective and efficient framework to identify deviated data instances. However, most anomaly detection methods are typically implemented in batch mode, and thus cannot be easily extended to large-scale problems without sacrificing computation and memory requirements. In this paper, we propose an online oversampling principal component analysis (osPCA) algorithm to address this problem, and we aim at detecting the presence of outliers from a large amount of data via an online updating technique. Unlike prior principal component analysis (PCA)-based approaches, we do not store the entire data matrix or covariance matrix, and thus our approach is especially of interest in online or large-scale problems Preparing a data set for analysis is generally the most time consuming task in a data mining project, requiring many complex SQL queries, joining tables, and aggregating columns. Existing SQL aggregations have limitations to prepare data sets because they return one column per aggregated group. In general, a significant manual effort is required to build data sets, where a horizontal layout is required. We propose simple, yet powerful, methods to generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of one number per row. This new class of functions is called horizontal aggregations. Horizontal aggregations build data sets with a horizontal denormalized layout (e.g., point-dimension, observation variable, instancefeature), which is the standard layout required by most data mining algorithms. We propose three fundamental methods to evaluate horizontal aggregations: CASE: Exploiting the programming CASE construct; SPJ: Based on standard relational algebra operators (SPJ queries); PIVOT: Using the PIVOT operator, which is offered by some DBMSs.
منابع مشابه
AN-EUL method for automatic interpretation of potential field data in unexploded ordnances (UXO) detection
We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys based upon the concept of the structural index (SI) of a potential anomaly which is relate...
متن کاملPrepare and Optimize Data Sets for Data Mining Analysis
Getting ready a data set for examination is usually the tedious errand in a data mining task, needing numerous complex SQL queries, joining tables and conglomerating sections. Existing SQL aggregations have limitations to get ready data sets since they give back one section for every amassed bunch. As a rule, a significant manual exertion is obliged to construct data sets, where a horizontal la...
متن کاملHorizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis
Data mining is widely used domain for extracting trends or patterns from historical data. However, the databases used by enterprises can’t be directly used for data mining. It does mean that Data sets are to be prepared from real world database to make them suitable for particular data mining operations. However, preparing datasets for analyzing data is tedious task as it involves many aggregat...
متن کاملInternational Journal of Advanced Research in Computer Science and Electronics Engineering
Data mining is the process that attempts to discover patterns in large data sets. The actual data mining task is the automatic or semiautomatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records i.e.cluster analysis, unusual records (anomaly detection) and dependencies association rule mining. This usually involves using databa...
متن کاملPreparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL
A huge amount of time is needed for making the dataset for the data mining analysis because data mining practitioners required to write complex SQL queries and many tables are to be joined to get the aggregated result. The traditional SQL aggregations prepare the data sets in vertical layout that is; they return result on one column per aggregated group. But for the data mining project, the dat...
متن کامل